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Sources of energy

1 Coal 51%

2 MNuclaar 12%

3 Gas & oil 10%

4 Renewahlos 2%

5 Purchases 21%

6 Manitoba Hydro purchases 4%

Fig. 3-16 Resource mix at XcelEnergy [14].



Rankine Thermodynamic
Cycle in Coal Plants

Steam at High pressure
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Fig. 3-4 Rankine thermodynamic cycle in coal-fired power plants.

Visit the following website for Power Plant Animations:

Efficiency 38% maximum
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Fig. 3-5 Brayton thermodynamic cycle in natural-gas power plants.

Non-salient pole, high speed generators

maximum efficiency 35% for single cycle, 55-
60% for combined cycle



Hydro Power Generation

| Water _— Synchronous
~ — g - — — | Penstock

Generator .
Turbine

Fig. 3-3 Hydro power (Source: www.bpa.gov).

Turbine efficiency 93%

Slow speed, salient pole, larger size
generators
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Nuclear Power Plant
Types

Containment Structure

Pressurizer _Steam
— Gene

rator

(b)
Fig. 3-6 (a) BWR and (b) PWR reactors [5].

Visit the following websites for Nuclear Power Plant Animations:
PWR:
BWR:



Wind Generation using an
Induction Generator

Connected Directly to the
AC Grid

»
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Fig. 3-9 Induction generator directly connected to the grid [8].
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Fig. 3-8 ¢, as a function of A [7]; these would vary based on the turbine design.



Wind Generation using a Doubly-Fed
Induction Generator

e Wound rotor
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Fig. 3-10 Doubly-fed, wound-rotor induction generator [9].



Wind Generation usin? an AC
Generator Connected
Electronics
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Fig. 3-11 Power Electronics connected generator [10].

Variable voltage and variable speed
generations
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Photovoltaics
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Fig. 3-12 PV cell characteristics [11].

Efficiency ranges from 5% to 18%
depending upon materials used - not

competitive



Interfacing PV with AC
Grid
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Fig. 3-13 Photovoltaic systems.



Fuel Cells
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Fig. 3-14 Fuel cell v-i relationship and cell power [12].

Not yet commercially competitive



Application of
Synchronous Generators

Steam at High pressure
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Fig. 9-1 Synchronous generators driven by (a) steam turbines, and (b) hydraulic turbines.



Synchronous Generators

Maintain synchronism
Reactive Power flow control
Power System Stability
Short Circuit Control



Cross-section of
Synchronous Generators

Stator

Air gap

(b)
Fig. 9-2 Machine cross-section.

Non-salient pole alternators for high speeds



Svnchronous Generator
Structure

(b)
Fig. 9-3 Machine structure.

Salient pole generators for slow speeds



Sinusoidally-Distributed
Windings

(a) (b
Fig. 9-4 Three phase windings on the stator.



Synchronous Generator
Rotor Field

Fig. 9-6 Field winding on the rotor that is supplied by a dc current /.



Voltage induced in the
Stator Phase due to
Rotating Rotor Field

Fig. 9-7 Current direction and voltage polarities; the rotor position shown induces

maximum e, .



Plot of time-varying Flux
and Voltage
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Fig. 2-27 Example 2-11.



Armature Reaction Due to
Three Stator Currents
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Fig. 9-9 Armature reaction due to phase currents.

Emf = - (rate of change of flux linkage)



Combined induced emf
due to filed flux and
armature reaction

(a) (b)

Fig. 9-10 Phasor diagram and per-phase equivalent circuit.



One-Machine Infinite-Bus
System
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Fig. 11-1 Simple one-generator system connected to an infinite bus.



A Radial System
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Fig. 10-1 A radial system.



Power Out as a function of
rotor Angle and power
stability
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Fig. 9-11 Power output and synchronism.



Power Flow in AC
Systems
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Fig. 2-17 Power transfer between two ac systems.
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Steady State Stability
Limit
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Fig. 9-12 Steady state stability limit.
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Power-Angle

Characteristics
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Fig. 11-4 Fault on one of the transmission lines.



Power-Angle
Characteristic in One-
Machine Infinite-Bus
System
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Fig. 11-2 Power-angle characteristics.




Critical Clearing Angle
using Equal-Area Criterion
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Fig. 11-6 Critical clearing angle.



Reactive Power Control by
Field Excitation
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Fig. 9-13 Excitation control to supply reactive power.



Synchronous
Condenser

Synchronous
QC}(I)Illldenser

Fig. 9-14 Synchronous Condenser.



Automatic Voltage
Regulation (AV

phase-controlled
rectifier

field winding

acinput output
Generator
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Fig. 9-15 Field exciter for automatic voltage regulation (AVR).
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Short-Circuit Current
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Figure 8-18 (a) Utility Supply, (b) Short-Circuit Current.



Armature Reaction Flux in
Steady State Leading to
Synchronous Reactance

Fig. 9-16 Armature reaction flux in steady state.



Simulation of a Short-
Circuit Assuming a
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Fig. 9-17 Armature (a) and field current (b), after a sudden short circuit [source: 4].



Representation for Steady State,
Transient Stability and Fault
Analysis
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Fig. 9-18 Synchronous generator modeling for transient and sub-transient conditions.



Voltages and Current
Phasors with Both-Side
Voltages at 1 PU
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Fig. 10-2 Phasor diagram and the equivalent circuit with V, =V, =1pu.
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*ENGR 5100 Methaods for Applied Mathematics for Engr 3
*EECE 5300 Computer Application to Power Systems 3
*CISE 5220 Computer Aided System Design 3
- Spring Semester Cr. Hours
*EECE 5310 Power Systems Relaying 3
*ENGR 5150 Numerical Methods for Engineers 3
¢ Elective 3
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*EECE 5320 Transient Analysis in Power Systems 3
*ENGR 5500 Special Problems 3
®*EECE 5600 Special Topics in Power Systems 3
Spring Semester Cr. Hours
*EECE 5330 Power System Stability 3

*ENGR 5500+ Special Problems Continued 3
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*ENGL 1010, 1020 Freshman English | & 11 3 3

°HIST 2010 American History | 3

°*MATH 1910, 1920 Calculus with Anal. Geom |, Calculus I 4 4

*CHEM 1110, 1111 General Chemistry and Lab 4

*PHYS 2110, 2111 General Physics | and Lab 4

*ENGR 1020 Freshman Engineering 1

*ENGR 1151 Engineering Design Graphics 1

*ENGR 1000 Freshman Orientation 1

*COMM 2200 Public Speaking 3
14 17

°Sophomore Year

*MATH 2110, 3120 Calculus Ill, Applied Mathematics 4 3

°*PHYS 2120, 2121 General Physics Il and Lab 4

*ENGR 2000, 2001 Circuits | and Lab 4
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*ENGR 2230 Computer Programming for Engineers 3
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*ENGL 2110 or 2310 American or World Literature | 3

° 17 16

°All students are required to take and pass the Engineering Entrance Examination (EEE) prior to enrolling in upper level (3000-4000) major and engineering courses.
*Junior Year

°*EECE 2120, 3200 Circuits Il, Linear Systems 3 3
°*EECE 3100, 3101 Design of Digital Logic Systems & Lab 4
°ENGR 3200, 3400 Introduction to Design, Numerical Analysis 3 3
°ENGR 3300, EECE 3210 Materials Science, Electromagnetic Theory 2 3
°*EECE 3061 Advanced Programming Lab 1
*EECE 3300, 3301 Electronics and Lab 4
¢ Math and Science Elective 3
Humanities Elective 3
N 16 16
°Senior Year
*ENGR 4500, 4510 Capstone Design Project I, Il 1 1
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°*EECE 4101 Electrical Systems Design Lab, 1
3
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